

Network coding for a survivable and secure Internet

Associate Professor Harald Øverby Department of Telematics Norwegian University of Science and Technology

TTM6 Tele-economics, advanced

Lecture overview

- Survivability mechanisms
 - 1+1 path protection
 - Network Layer Packet Redundancy (NLPR)
- · How to utilise network coding to provide survivability
 - Network layer
 - Comparison with existing approaches
- Secure packet transport using network coding

Unified view on QoS

- Quality of Service (QoS) includes
 - Performance
 - Survivability
 - Security
- Aim for a unified view on QoS
- Cost is also an essential part
- Network coding as a mechanism to provide costefficient QoS in communication networks

Network survivability

- A networks ability to handle failures
- Can be measured as the fraction of available resources after the occurrence of failures
- Related terms
 - Dependability: Trustworthiness of a system
 - Resillience: Ability to provide service in the presence of faults

5

Network survivability

Network survivability Example

(a) pure performance model

(b) pure availability model

(c) composite model

0,0

Reference: Y. Liu, S. Trivedi: A general framework for network survivability quantification

NTNU – Trondheim Norwegian University of Science and Technology

Survivability mechanisms

- Protection strategies
 - Predetermined capacity reserved for back-up paths
 - Fast
 - Requires much extra capacity
- Restoration strategies
 - Dynamic resource allocation in the case of failure
 - Slow
 - Requires little extra capacity

1+1 path protection

- Protection strategy
- Duplicate packet on redundant path
- R will receive two identical data packets in non-failure state
- Costly

 d_1 SR d_1

1+1 path protection

NTNU – Trondheim Norwegian University of Science and Technology

Shared packet redundancy (SPR)

- A set of redundancy packets are added to a set of data packets
 - Ingress node
- Packets may be lost in the network
 - Failures
 - Buffer overflow
 - Contention (Optical Packet/Burst Switching)
- Packets may be reconstructed
 - Egress node

Shared packet redundancy (SPR) Context of OPS networks

NTNU – Trondheim Norwegian University of Science and Technology

Shared packet redundancy (SPR) Context of OPS networks

Norwegian University of Science and Technology

1+1 path protection with SPR

d_1	d_2	$d_1\oplus d_2$	$d_1=(d_1\oplus d_2)\oplus d_2$	$d_2 = (d_1 \oplus d_2) \oplus d_1$
0	0	0	0	0
0	1	1	0	1
1	0	1	1	0
1	1	0	1	1

1+1 path protection with NC

Three approaches to 1+1PP

Cost-efficiency

- The schemes are evaluated on cost-efficiency
- Amount of resources used to provide 1+1PP
- Two approaches
 - Analytical model
 - Simulation of realistic network topologies
- Network cost relative to unit cost
- Challenge
 - Accurate analytical model
 - Computing resources required for simulation model

Sample network topology

NTNU – Trondheim Norwegian University of Science and Technology

Cost model

$$c(p_{S,R,1}) = c(p_{S_1,R,1}) = c(p_{S_2,R,1}) = \pi$$

$$c(p_{S,R,x}) = (1+b)^{x-1}c(p_{S,R,1}) = (1+b)^x \pi$$

Symbol	Description	
S	Source node	
R	Receiver node	
V	Coding node	
d_i	Data packet <i>i</i>	
$p_{A,B,x}$	Path between node A and B with	
	cardinality x	
$c(p_{A,B,x})$	Cost of path $p_{A,B,x}$	
b	Relative cost increase for next path	
k	Relative distance from source nodes S_1 and S_2	
	to coding node V	
C_Y	Total cost of providing 1+1 path protection with	
	scheme $Y \in \{T, NR, NC\}$	
C_Y^D	Total cost of sending data packets	
N_Y	Relative cost of providing 1+1 path protection with	
	scheme $Y \in \{T, NR, NC\}$	

www.ntnu.edu

--

Cost model T1+1PP

$$C_{\rm T} = c(p_{S,R,1}) + c(p_{S,R,2}) = (b+2)\pi$$

$$C_{\mathrm{T}}^D = \pi$$

NTNU - Trondheim Norwegian University of Science and Technology

Cost model NR1+1PP

$$C_{\rm NR} = \sum_{i=1}^{3} c(p_{S,R,i}) = \sum_{i=1}^{3} (1+b)^{i-1}\pi = (b^2+3b+3)\pi$$

$$C_{\rm NR}^D = 2\pi$$

NTNU – Trondheim Norwegian University of Science and Technology

Cost model NC1+1PP

$$C_{\rm NC} = c(p_{S_1,R,i}) + c(p_{S_2,R,i}) + c(p_{S_1,V,i}) + c(p_{S_2,V,i}) + c(p_{V,R,i}) = \pi + (1+b/2)\pi + k(1+b/2)\pi + k(1+b/2)\pi + k(1+b)\pi + (1-k)(1+b)^2\pi = ((1-k)b^2 + \frac{5-k}{2}b + k + 3)\pi.$$

 $C_{\rm NC}^D=2\pi$

Cost comparison

$$N_Y = \frac{C_Y - C_Y^D}{C_Y^D}$$

NTNU – Trondheim Norwegian University of Science and Technology

Results

ILP formulation

$$\min\left\{\left[\sum_{\forall i \in E} \sum_{\forall d \in D} c_i \left(x_i^d + y_i^d - \sum_{\forall j \in V} \frac{z_i^{d,j}}{2}\right)\right] - p \cdot q^d\right\}$$

Symbol	Description
x_i^d	$\in \{0, 1\}$, if link $i \in$ the working path for demand d
y_i^d	$\in \{0, 1\}$, if $i \in$ the protection path for d
$z_i^{d,j}$	$\in \{0, 1\}$, if $i \in$ the coding path with coding node j for d
v_j^d	$\in \{0, 1\}$, if j is the coding node for d
w_j	$\in \{0, 1\}$, if j is a coding node in the network G
q^d	$\in \{0, 1\}$, if demand d is routed
$d_{d_2}^{d_1}$	$\in \{0, 1\}$, if $d_1 \neq d_2$, if d_1 and d_2 are coded together
r_j^d	$\in \{0, 1\}$, if j is the target of d
N	$\in \mathbb{N}, 0 \leq N \leq V $, maximum number of coding nodes
p	$\in \mathbb{Z}^+$, large, penalty if demand not routed
c_i	$\in \mathbb{R}^+$, cost of link <i>i</i>
f_i	$\in \mathbb{R}^+$, available free capacity along link <i>i</i>

Secure networking with NC

- Network coding may be utilised to provide secure data transmission
- Protects against eavesdropping of a single link
- All incoming data packets to an ingress node are coded and transported over the network
- A number of coded packets is required to obtain data information

26

Coded packet transport

d=km

d = km = km(1+c)

Coded packet transport

Summary

- How to utilize NC to provide
 - 1+1 path protection
 - Secure data transport
- Cost-advantages over traditional 1+1 path protection
- May also utilize other networking advantages of NC
 - Cost-efficient provision of multicasting

